Pengaruh Kadar Senyawa Kapsaisinoid Terhadap Produksi Biogas Dalam Proses Anaerobic Digestion Limbah Sayur
DOI: 10.55075/wa.v49i1.256Sari
Abstrak
Senyawa kapsaisinoid, seperti kapsaisin yang ditemukan dalam berbagai jenis sayuran dikenal karena sifat antimikrobanya, yang dapat memengaruhi aktivitas mikroba dalam sistem pencernaan anaerobik atau anaerobic digestion (AD). Penelitian ini bertujuan untuk mengetahui pengaruh kadar senyawa kapsaisinoidterhadap produksi biogas dalam proses anaerobic digestion menggunakan limbah sayur. Pada penelitian ini, senyawa capsaicinoids yang digunakan berupa bubuk kapsaisin natural. Untuk mengetahui pengaruh kadar senyawa capsaicinoids terhadap produksi biogas didesainlah enam kadar senyawa capsaicinoids (Cp) pada substrat (campuran bubuk kapsaisin natural, limbah sayur dan kotoran sapi) yaitu 0 mg Cp/L; 0,005 mg Cp/L, 0,01 mg Cp/L; 0,015 mg Cp/L; 0,02 mg Cp/L; dan 0,025 mg Cp/L. Substrat dimasukkan ke dalam digester untuk memproduksi biogas melalui proses anaerobic digestion. Hasil penelitian menunjukkan bahwa substrat dengan kadar 0 mg Cp/L; 0,005 mg Cp/L, 0,01 mg Cp/L; 0,015 mg Cp/L; 0,02 mg Cp/L; dan 0,025 mg Cp/L secara berturut-turut menghasilkan biogas komulatif sebesar 1000 ml; 880 ml; 720 ml; 640 ml; 570 ml; dan 430 ml dengan kandungan metana secara berturut-turut sebesar 759,5 ml; 599,5 ml; 470 ml; 371 ml; 302 ml; dan 220 ml. Dapat disimpulkan bahwa semakin tinggi kadar senyawa capsaicinoids maka biogas dan metana yang dihasilkan semakin sedikit.
Kata kunci : Capsaicinoids; biogas; metana; anaerobic digestion; limbah sayur
Abstract
Capsaicinoid compounds, such as capsaicin in various vegetables, are recognized for their antimicrobial properties, which can affect microbial activity in the anaerobic digestion (AD) system. The research aims to assess the impact of different levels of capsaicinoid compounds on biogas production during the anaerobic digestion process using vegetable waste. Due to this research, the capsaicinoid compound used was natural capsaicin powder. The six concentrations of the compound (Cp) were prepared in the substrate to evaluate the effect of capsaicinoid levels on biogas production, which consisted of a mixture of natural capsaicin powder, vegetable waste, and cow dung (0 mg Cp/L, 0.005 mg Cp/L, 0.01 mg Cp/L, 0.015 mg Cp/L, 0.02 mg Cp/L; and 0.025 mg Cp/L). The substrate was fed into the digester to produce biogas through an anaerobic digestion. The results indicated that the cumulative biogas production at each level of capsaicinoid concentration was as follows: 0 mg Cp/L produced 1000 ml; 0.005 mg Cp/L produced 880 ml; 0.01 mg Cp/L produced 720 ml; 0.015 mg Cp/L produced 640 ml; 0.02 mg Cp/L produced 570 ml; and 0.025 mg Cp/L produced 430 ml. The corresponding methane content was 759.5 ml, 599.5 ml, 470 ml, 371 ml, 302 ml, and 220 ml, respectively. In conclusion, the results suggest that higher levels of capsaicinoid compounds lead to decreased biogas and methane production.
Keywords: Capsaicinoids; biogas; methane; anaerobic digestion; vegetables waste.
Teks Lengkap:
PDFReferensi
Azevedo, A., Lapa, N., Moldão, M., & Duarte, E. (2023). Opportunities and challenges in the anaerobic co-digestion of municipal sewage sludge and fruit and vegetable wastes: A review. Energy Nexus, 10(May). https://doi.org/10.1016/j.nexus.2023.100202
Bacenetti, J., Sala, C., Fusi, A., & Fiala, M. (2016). Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable. Applied Energy, 179, 669–686. https://doi.org/10.1016/j.apenergy.2016.07.029
Borowski, S., Cieciura-Włoch, W., & Liczbiński, P. (2023). Enhancement of Biogas Production from Vegetable Waste by Application of Mineral Fertilizers. Bioenergy Research, 972–982. https://doi.org/10.1007/s12155-023-10700-9
Bres, P., Beily, M. E., Young, B. J., Gasulla, J., Butti, M., Crespo, D., … Komilis, D. (2018). Performance of semi-continuous anaerobic co-digestion of poultry manure with fruit and vegetable waste and analysis of digestate quality: A bench scale study. Waste Management, 82, 276–284. https://doi.org/10.1016/j.wasman.2018.10.041
Cahyari, K., & Sahroni, A. (2015). Jurnal Bahan Alam Terbarukan. Jurnal Bahan Alam Terbarukan, 4(1), 14–20. https://doi.org/10.15294/jbat.v4i1.3769
D’Silva, T. C., Isha, A., Verma, S., Shirsath, G., Chandra, R., Vijay, V. K., … Kovács, K. L. (2022). Anaerobic co-digestion of dry fallen leaves, fruit/vegetable wastes and cow dung without an active inoculum – A biomethane potential study. Bioresource Technology Reports, 19(August). https://doi.org/10.1016/j.biteb.2022.101189
Deressa, L., Libsu, S., Chavan, R. B., Manaye, D., & Dabassa, A. (2015). Production of Biogas from Fruit and Vegetable Wastes Mixed with Different Wastes. Environment and Ecology Research, 3(3), 65–71. https://doi.org/10.13189/eer.2015.030303
Forster-Carneiro, T Romero, L. I., & Perez, M. (2008). Influence of total solid and inoculum contents on performance of anaerobic reactors treating food waste. Bioresource Technology, 99, 6994–7002. https://doi.org/10.1016/j.biortech.2008.01.018
Giovannini, G., Donoso-Bravo, A., Jeison, D., Chamy, R., Ruíz-Filippi, G., & Vande Wouwer, A. (2016). A review of the role of hydrogen in past and current modelling approaches to anaerobic digestion processes. International Journal of Hydrogen Energy, 41(39), 17713–17722. https://doi.org/10.1016/j.ijhydene.2016.07.012
Leite, V. D., Ramos, R. O., Silva, P. M. U., Lopes, W. S., & Sousa, J. T. (2023). Kinetic models describing the hydrolytic stage of the anaerobic co-digestion of solid vegetable waste and anaerobic sewage sludge. Biomass Conversion and Biorefinery, 13(1), 343–353. https://doi.org/10.1007/s13399-021-01574-y
Lijó, L., González-García, S., Bacenetti, J., & Moreira, M. T. (2017). The environmental effect of substituting energy crops for food waste as feedstock for biogas production. Energy, 137, 1130–1143. https://doi.org/10.1016/j.energy.2017.04.137
Magama, P., Chiyanzu, I., & Mulopo, J. (2022). A systematic review of sustainable fruit and vegetable waste recycling alternatives and possibilities for anaerobic biorefinery. Bioresource Technology Reports, 18(February), 101031. https://doi.org/10.1016/j.biteb.2022.101031
Nunes Ferraz Junior, A. D., Etchebehere, C., Perecin, D., Teixeira, S., & Woods, J. (2022). Advancing anaerobic digestion of sugarcane vinasse: Current development, struggles and future trends on production and end-uses of biogas in Brazil. Renewable and Sustainable Energy Reviews, 157(May 2021). https://doi.org/10.1016/j.rser.2021.112045
Pavi, S., Kramer, L. E., Gomes, L. P., & Miranda, L. A. S. (2017). Biogas production from co-digestion of organic fraction of municipal solid waste and fruit and vegetable waste. Bioresource Technology, 228, 362–367. https://doi.org/10.1016/j.biortech.2017.01.003
Purseglove, J.W. Brown, G., Green, C.L. and Robbins, S. R. J. (1981).
Spices. Vol. 2. Longman Scientific and Tecnial Co. and John Wiley and Sons, Inc., New York, 457. - References - Scientific Research Publishing (Vol. 2). Retrieved from https://www.scirp.org/reference/referencespapers?referenceid=2255398
Ramadhan, M., Sukma Prasettia, Juliana Ulfa, Riski Yulianto Saputra, & Fuji Hernawati Kusumah. (2023). Analysis of Biogas Yield From Organic Waste (Vegetables, Cassava Peels And Banana Leaves). Jurnal Energi Dan Ketenagalistrikan, 1(2), 186–191. https://doi.org/10.33322/juke.v1i2.42
Rhohman, F., & Nuryosuwito, N. (2021). Analisa Matematis Hasil Biogas Dari Sampah Sayuran Berdasarkan Perbedaan Jumlah Bahan. Jurnal Mesin Nusantara, 4(2), 84–89. https://doi.org/10.29407/jmn.v4i2.17092
Septiariva, I. Y., Suryawan, I. W. K., Suhardono, S., & Mutiara Sari, M. (2023). Evaluasi Kotoran Kelinci sebagai Bioaktivator untuk Produksi Biogas dari Sampah Sayuran. Jurnal Teknologi Lingkungan Lahan Basah, 11(3), 810. https://doi.org/10.26418/jtllb.v11i3.69590
Soeprijanto, S., Fatullah, A. R., Agustina, S., Amalia, D. F., & Kaisar, A. A. (2020). Biogas Production from Vegetables and Fruit Wastes Using Anaerobic Floating Bioreactor. Eksergi, 17(2), 99. https://doi.org/10.31315/e.v17i2.3733
Stephen Bernard, S., Srinivasan, T., Suresh, G., Ivon Paul, A., Mohideen Fowzan, K., & Ashwin Kishore, V. (2020). Production of biogas from anaerobic digestion of vegetable waste and cow dung. Materials Today: Proceedings, 33, 1104–1106. https://doi.org/10.1016/j.matpr.2020.07.129
Tang, B., He, M., Dong, Y., Liu, J., Zhao, X., Wang, C., … Zhang, W. (2020). Effects of different forms of vegetable waste on biogas and methane production performances in a batch anaerobic digestion reactor. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 00(00), 1–11. https://doi.org/10.1080/15567036.2020.1818003
Taolin, C. (2019). Efek Antimikroba Capsaicin. Jurnal Ilmiah Kesehatan Sandi Husada, 10(2), 212–216. https://doi.org/10.35816/jiskh.v10i2.152
Taufik Dani, Purwanto, & Sudarno Utomo. (2024). Studi Literatur: Perbandingan Efektifitas Biogas dari Kotoran Sapi dan Sampah Sisa Sayur atau Buah. INSOLOGI: Jurnal Sains Dan Teknologi, 3(1), 19–31. https://doi.org/10.55123/insologi.v3i1.3019
Vats, N., Khan, A. A., & Ahmad, K. (2019). Effect of substrate ratio on biogas yield for anaerobic co-digestion of fruit vegetable waste & sugarcane bagasse. Environmental Technology and Innovation, 13, 331–339. https://doi.org/10.1016/j.eti.2019.01.003
Wang, X., Li, Z., Bai, X., Zhou, X., Cheng, S., Gao, R., & Sun, J. (2018). Study on improving anaerobic co-digestion of cow manure and corn straw by fruit and vegetable waste: Methane production and microbial community in CSTR process. Bioresource Technology, 249(October 2017), 290–297.
https://doi.org/10.1016/j.biortech.2017.10.038
Wikandari, R., Nguyen, H., Millati, R., Niklasson, C., & Taherzadeh, M. J. (2015). Improvement of biogas production from orange peel waste by leaching of limonene. BioMed Research International, 2015. https://doi.org/10.1155/2015/494182
Wu, C. C., Lin, J. P., Yang, J. S., Chou, S. T., Chen, S. C., Lin, Y. T., … Chung, J. G. (2006). Capsaicin induced cell cycle arrest and apoptosis in human esophagus epidermoid carcinoma CE 81T/VGH cells through the elevation of intracellular reactive oxygen species and Ca2+ productions and caspase-3 activation. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 601(1–2), 71–82. https://doi.org/10.1016/j.mrfmmm.2006.06.015
Zhang, C., Su, H., Baeyens, J., & Tan, T. (2014). Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews, 38, 383–392. https://doi.org/10.1016/j.rser.2014.05.038
Zhang, C., Sun, Y., Cao, T., Wang, W., Huo, S., & Liu, Z. H. (2022). Influence of organic load on biogas production and response of microbial community in anaerobic digestion of food waste. International Journal of Hydrogen Energy, 47(77), 32849–32860. https://doi.org/10.1016/j.ijhydene.2022.07.187
Zhang, C., Xiao, G., Peng, L., Su, H., & Tan, T. (2013). The anaerobic co-digestion of food waste and cattle manure. Bioresource Technology, 129, 170–176. https://doi.org/10.1016/j.biortech.2012.10.138
Zhang, C., Yang, L., Huo, S., Su, Y., & Zhang, Y. (2021). Optimization of the Cell Immobilization-Based Chain-Elongation Process for Efficient n-Caproate Production. ACS Sustainable Chemistry and Engineering, 9(11), 4014–4023.
Refbacks
- Saat ini tidak ada refbacks.