Degradasi Fotokatalitik Senyawa Metilen Biru Dengan Katalis Titania Nanotube
DOI: 10.55075/wa.v48i1.230Sari
Pembuatan fotokatalis titania nanotube (TiO2 NT) dan peranannya dalam mendegradasi senyawa metilen biru (MB) telah dilakukan. Tujuan dari riset ini adalah menyelidiki hubungan waktu anodisasi dengan nilai photocurrent TiO2 NT serta menggunakan nilai photocurrent sebagai dasar pemilihan waktu optimum sintesis TiO2 NT untuk mendegradasi MB. Riset diawali dengan melakukan anodisasi lempengan Ti dengan variasi waktu anodisasi antara 30-180 menit untuk menghasilkan TiO2 NT. Selanjutnya dilakukan pengukuran nilai photocurrent TiO2 NT yang telah dihasilkan dan ditentukan waktu anodisasi yang dapat menghasilkan TiO2 NT dengan nilai photocurrent tertinggi. Material TiO2 NT dengan nilai photocurrent tertinggi dikarakterisasi dengan spektrofotometer FTIR, SEM-EDS dan diuji aktivitas degradasi fotokatalitiknya pada MB. TiO2 NT yang disintesis dengan waktu anodisasi 180 menit menunjukkan nilai photocurrent sebesar 165 µA (tertinggi). Hasil karakterisasi FTIR menunjukkan serapan pada bilangan gelombang 554 cm-1 (vibrasi ikatan Ti-O) dan 593 cm-1 (vibrasi ikatan Ti-O-O). Hasil analisis SEM menunjukkan bahwa TiO2 yang telah disintesis memiliki bentuk tabung dengan ukuran diameter berkisar antara 118 hingga 150 nm dan distribusinya merata. Karakterisasi dengan EDS menunjukkan bahwa perbandingan titanium dan oksigen pada TiO2 NT bernilai 1:2. Hasil uji aktivitas degradasi fotokatalitik MB dengan fotokatalis TiO2 NT menampilkan bahwa semakin lama waktu radiasi UV, maka jumlah MB yang terdegradasi oleh TiO2 NT semakin meningkatkan. Efisiensi degradasi tertinggi dari TiO2 NT (47,73%) dicapai pada waktu radiasi 360 menit. Degradasi MB dengan fotokatalis TiO2 NT mengikuti persamaan reaksi orde satu semu dengan nilai tetapan laju reaksi sebesar 0,0018 menit-1.
Teks Lengkap:
PDFReferensi
Ahmed, R. M., Hasan, I. (2021). A review on properties and applications of TiO2 and associated nanocomposite materials. Materials Today: Proceedings, 81(2), 1073–1078.
Amelia, S., & Maryudi, M. 2019. Application of Natural Zeolite in Methylene Blue Wastewater Treatment Process by Adsorption Method. Jurnal Bahan Alam Terbarukan, 8(2), 144–147.
Anucha, C. B., Altin, I., Bacaksiz, E., Stathopoulos, V. N. (2022). Titanium dioxide (TiO₂)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies. Chemical Engineering Journal Advances, 10,100262.
Bello, V. E., & Olafadehan, O. A. (2022). Evaluation of Heterocyclic Aromatic Compound Dye (Methylene Blue) on Chitosan Adsorbent Sourced from African Snail Shell: Modelling and Optimization Studies. In Journal of Applied Science & Process Engineering, 9(1), 1054-1091.
Chelbi, S., Djouadi, D., Chelouche, A., Hammiche, L., Touam, T., Doghmane, A. (2020). Effects of Ti-precursor concentration and annealing temperature on structural and morphological properties of TiO2 nano-aerogels synthesized in supercritical ethanol. SN Applied Sciences, 2(5), 1–10.
Chen, S. H., Jiang, Y. S., Lin, H. Y. (2020). Easy Synthesis of BiVO4 for Photocatalytic Overall Water Splitting. ACS Omega, 5(15), 8927–8933.
Ciobanu, V., Plesco, I. (2021). TiO2 Nanotube For Photocatalytic Degradation of Methylene Blue. Industrial Engineering Materials Science and New Technologies, 18(1), 23-30.
Costa, L.L., & Prado, A.G.S. (2009). TiO2 nanotube as recyclable catalyst for efficient photocatalytic degradation of indigo carmide dye. Journal of Photochemistry and Photobiology A:Chemistry, 201, 45-49.
Coto, M., Troughton, S. C., Knight, P., Joshi, R., Francis, R., Kumar, R. V., Clyne, T. W. (2021). Optimization of the microstructure of TiO2 photocatalytic surfaces created by Plasma Electrolytic Oxidation of titanium substrates. Surface and Coatings Technology, 411, 127000.
Debele, E. T., Desissa, T. D., Zelekew, O. A., Bakare, F. F., Feyisa, G. B., Wondimu, T. H. (2023). Plant-Mediated Synthesis of Ni-Doped CuO and Fe2O3 Nanocomposite for Photodegradation of Methylene Blue Dye. Journal of Nanomaterials, 2023, 1-12.
Dutta, V., Sharma, S., Raizada, P., Thakur, V. K., Khan, A. A. P., Saini, V., Asiri, A. M., Singh, P. (2021). An overview on WO3 based photocatalyst for environmental remediation. Journal of Environmental Chemical Engineering, 9(1), 105018.
Farrugia, C., Mauro, A.D., Lia, F., Zammit, E., Rizzo, A., Privitera, V., Impellizzeri, G., Buccheri, M.A., Rappazzo, G., Grech, M., Refalo, P., Abela, S. (2021). Suitability of Different Titanium Dioxide Nanotube Morphologies for Photocatalytic Water Treatment. Nanomaterials, 11, 1-18.
Ge, Q., Li, P., Liu, M., Xiao, G., Xiao, Z., Mao, J., Gai, X. (2023). Removal of methylene blue by porous biochar obtained by KOH activation from bamboo biochar. Bioresources and Bioprocessing, 10(1), 1-14.
Hitam, C. N. C.,& Jalil, A. A. (2020). A review on exploration of Fe2O3 photocatalyst towards degradation of dyes and organic contaminants. Journal of Environmental Management, 258, 110050.
Ihaddaden, S., Aberkane, D., Boukerroui, A., Robert, D. (2022). Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica). Journal of Water Process Engineering, 49, 1-12.
Khan, I., Saeed, K., Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931.
Khuluk, R. H., Rahmat, A., Buhani, Suharso. (2019). Removal of Methylene blue by adsorption onto activated carbon from coconut shell (Cocous Nucifera L.). Indonesian Journal of Science and Technology, 4(2), 229–240.
Li, S., Cui, Y., Wen, M., Ji, G. (2023). Toxic Effects of Methylene Blue on the Growth, Reproduction and Physiology of Daphnia magna. Toxics, 11(7), 594.
Liu, Y., Xie, C., Li, J., Zou, T., Zeng, D. (2012). New insight into relationship between photocatalytic activity and photocurrent of TiO2/WO3 nanocomposite. Applied Catalyst A: General, 433, 81-87.
Liu, Z., Zhang, Y., Kong, L., Liu, L., Luo, J., Liu, B., Zhou, Q., He, F., Xu, D., Wu, Z. (2019). Preparation and preferential photocatalytic degradation of acephate by using the composite photocatalyst Sr/TiO2-PCFM. Chemical Engineering Journal, 374, 852–862.
Makeswari, M., & Saraswathi, P. (2020). Photo catalytic degradation of methylene blue and methyl orange from aqueous solution using solar light onto chitosan bi-metal oxide composite. SN Applied Sciences, 2(3), 1-12.
Mohadi, R., Siregar, P. M. S. B. N., Palapa, N. R., Lesbani, A. (2022). Preparation of Zn/Al-chitosan Composite for the Selective Adsorption of Methylene Blue Dye in Water. Makara Journal of Science, 26(2), 128–136.
Mohamed, A., Yousef, S., Nasser, W. S., Osman, T. A., Knebel, A., Sánchez, E. P. V., Hashem, T. (2020). Rapid photocatalytic degradation of phenol from water using composite nanofibers under UV. Environmental Sciences Europe, 32(1), 1-8.
Munir, M., Nazar, M. F., Zafar, M. N., Zubair, M., Ashfaq, M., Hosseini-Bandegharaei, A., Khan, S. U. D., Ahmad, A. (2020). Effective Adsorptive Removal of Methylene Blue from Water by Didodecyldimethylammonium Bromide-Modified Brown Clay. ACS Omega, 5(27), 16711–16721.
Naffeti, M., Zaibi, M.A., Nefzi, C., Garcia-Arias, A.V., Chtourou, R., Postigo, P.A. (2023). Highly efficient photodegradation of methylene blue by a composite photocatalyst of bismuth nanoparticles on silicon nanowires. Environmental Technology & Innovation, 30, 103133.
Oladoye, P. O., Ajiboye, T. O., Omotola, E. O., Oyewola, O. J. (2022). Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results in Engineering, 16, 100678.
Pete, K. Y., Kabuba, J., Otieno, B., Ochieng, A. (2023). Modeling adsorption and photocatalytic treatment of recalcitrant contaminant on multi-walled carbon/TiO2 nanocomposite. Environmental Science and Pollution Research, 30(41), 94154–94165.
Priatmoko, S., Widhihastuti, E., Widiarti, N., Subagja, D. (2021). Synthesis of Ni/NiO-TiO2 using sol-gel method and its activity in blue methylene degradation. Journal of Physics: Conference Series, 1918(3), 1-6.
Pujiastuti, H., Kustiningsih, I., Slamet. (2021). Improvement of the Efficiency of TiO2 Photocatalysts with Natural Dye Sensitizers Anthocyanin for the Degradation of Methylene Blue: Review. Jurnal Rekayasa Kimia dan Lingkungan. 16(2), 84-99.
Ramesh, M. (2021). CuO as efficient photo catalyst for photocatalytic decoloration of wastewater containing Azo dyes. Water Practice and Technology, 16(4), 1078–1090.
Rani, V., Sharma, A., Kumar, A., Singh, P., Thakur, S., Singh, A., Le, Q.V., Nguyen, V. H., Raizada, P. (2022). ZrO2-Based Photocatalysts for Wastewater Treatment: From Novel Modification Strategies to Mechanistic Insights. Catalyst, 12(11), 1-19.
Rosales, A., & Esquivel, K. (2020). SiO2@TiO2 composite synthesis and its hydrophobic applications: A review. Catalysts, 10(2), 1-17.
Sahu, S., Pahi, S., Sahu, J. K., Sahu, U. K., Patel, R. K. (2020). Kendu (Diospyros melanoxylon Roxb) fruit peel activated carbon—an efficient bioadsorbent for methylene blue dye: equilibrium, kinetic, and thermodynamic study. Environmental Science and Pollution Research, 27(18), 22579–22592.
Suharman, H., Supriyono, Krisnadi, Y.K., Gunlazuardi, J. (2015). Modification of Mixed Structure TiO2 Nanoporous-Nanotube Arrays with CdS Nanoparticle and Their Photoelectrochemical Properties. Jurnal Sains Materi Indonesia, 16(3), 118-125.
Sun, C., Yang, J., Xu, M., Cui, Y., Ren, W., Zhang, J., Zhao, H., Liang, B. (2022). Recent intensification strategies of SnO2-based photocatalysts: A review. Chemical Engineering Journal, 427, 131564.
Wang, S., Pu, J., Wu, J., Liu, H., Xu, H., Li, X., Wang, H. (2020). SO42−/ZrO2 as a solid acid for the esterification of palmitic acid with methanol: Effects of the calcination time and recycle method. ACS Omega, 5(46), 30139–30147.
Wang, W., Zhang, D., Ji, Z., Shao, D., Sun, P., Duan, J. (2021). High efficiency photocatalytic degradation of indoor formaldehyde with silver-doped ZnO/g-C3N4 composite catalyst under the synergistic effect of silver plasma effect and heterojunction. Optical Materials, 111, 110721.
Zheng, E., Jiang, F., Feng, G., Hu, Z., Wu, C., Wei, T., Wu, Q., Jiang, W. (2023). Research progress of Fe/C doped titanium dioxide visible light photocatalytic materials. Journal of Physics: Conference Series, 2510(1), 1-10.
Refbacks
- Saat ini tidak ada refbacks.