

Sintesis Nanokomposit Fe₃O₄/TiO₂ Sebagai Fotokatalis yang Dapat Diambil Kembali Dalam Fotoreduksi Limbah Ion Perak(I)

Adya Rizky Pradipta, Riri Enriyani, Lintannisa Rahmatia, Andita Utami

Program Studi Analisis Kimia, Politeknik AKA Bogor Jl. Pangeran Sogiri No.283, Tanah Baru, Bogor Utara, Kota Bogor, Jawa Barat 16154

^{*)}Email : adya.rizky.p@kemenperin.go.id (Received : 2 Juli 2021; Accepted: 7 Juli 2021; Published: 2 Agustus 2021)

Abstrak

Sintesis nanokomposit Fe_3O_4/TiO_2 sebagai fotokatalis yang dapat diambil kembali dalam fotoreduksi limbah ion Ag(I) telah dilakukan. Sintesis diawali dengan sintesis magnetit (Fe_3O_4) melalui kopresipitasi dan sonikasi. Pelapisan TiO_2 dilakukan dengan proses sol-gel dengan penambahan benih atau seed TiO_2 degusa, dan diikuti perlakuan termal pada suhu 500 °C. Hasil sintesis dikarakterisasi dengan fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope-energy dispersive X-ray (SEM-EDX), vibrating sample magnetometer (VSM) dan diffuse reflectance-UV (DR-UV). Uji aktivitas fotokatalis nanokomposit Fe_3O_4/TiO_2 dilakukan terhadap fotoreduksi ion Ag(I) dengan sistem batch dalam reaktor tertutup yang dilengkapi dengan lampu UV. Hasil penelitian menunjukkan bahwa nanokomposit Fe_3O_4/TiO_2 memiliki kemampuan fotokatalitik yang baik. Nanokomposit Fe_3O_4/TiO_2 memiliki kemampuan fotoreduksi lebih baik dibanding TiO_2 tanpa modifikasi. Fotoreduksi ion Ag(I) 12,5 ppm berlangsung optimum pada pH 6 dan waktu reaksi 90 menit dengan hasil sebesar 98,6 %.

Kata kunci: *TiO*₂; ion *Ag*(*I*); fotokatalis; nanokomposit

Abstract

Synthesis of Fe_3O_4/TiO_2 nanocomposites as a recoverable photocatalyst for photoreduction of Ag(I) ion waste has been carried out. The synthesis of Fe_3O_4/TiO_2 nanocomposites was firstly initiated by the synthesis of magnetite Fe_3O_4 through coprecipitation and sonication system. The TiO_2 coating using a sol-gel process with the addition of TiO_2 degussa seed, followed by thermal treatment at 500 °C. The products were characterized using an fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope-energy dispersive X-ray (SEM-EDX), vibrating sample magnetometer (VSM) dan diffuse reflectance-UV (DR-UV). The photocatalytic activity test of nanocomposite Fe_3O_4/TiO_2 was conducted for the photoreduction of Ag (I) ion waste in a batch system using a closed reactor equipped with UV light. The results indicated that the Fe_3O_4/TiO_2 nanocomposites have good photocatalytic activity. The Fe_3O_4/TiO_2 nanocomposites have better photoreduction capabilities than those of TiO_2 unmodified. Photoreduction of 12.5 ppm Ag(I) ion wast optimum at pH 6 in the reaction time of 90 minutes with the result was 98.6%.

Keywords: *TiO*₂; *Ag*(*I*) *io*; *photocatalyst*; *nanocomposite*

PENDAHULUAN

Limbah anorganik memiliki sifat toksik yang tinggi karena ion logam *non-degradable* dan mempunyai *lifetime* yang tidak terbatas sehingga dapat terakumulasi di lingkungan. Ion Ag(I) merupakan salah satu kandungan limbah anorganik. Limbah yang mengandung ion Ag(I) jika dibuang langsung ke lingkungan dapat membahayakan kesehatan dan lingkungan. Masalah kesehatan yang ditimbulkan oleh limbah yang mengandung logam perak adalah *Argyria*. Bahaya yang ditimbulkan oleh logam perak ini, mendorong diperlukannya penanganan terhadap limbah tersebut, sehingga dapat mengurangi atau bahkan menghilangkan bahaya yang ditimbulkan.

Berbagai metode telah dilakukan untuk mengatasi limbah logam perak, antara lain dengan metode emulsi membran cair, elektrolisis, pengendapan, adsorbsi, dan fotoreduksi terkatalisis. Santoso dan Buchari (2001) melaporkan bahwa penggunaan teknik pemisahan emulsi membran cair berbahan dimetildioktadesil-ammonium bromida untuk menanggulangi limbah cetak foto yang mengandung peraktiosulfat. Teknik ini mampu mengurangi limbah perak, tetapi teknik ini cukup sulit dan membutuhkan reagen yang cukup banyak. Penanganan limbah logam selanjutnya adalah dengan metode elektrolisis. Metode ini telah dilakukan oleh Dias dkk. (2016) untuk mendegradasi limbah perak(I). Metode ini dilaporkan cukup efektif, tetapi membutuhkan biaya yang sangat mahal. Metode pengendapan pernah dilakukan oleh Rahayuningwulan dan Ardeniswan (2005) dengan menggunakan NaCl 1% dan pemanasan pada suhu 70 °C, sehingga diperoleh endapan AgCl. Metode ini secara umum memberikan hasil analisis yang efektif, tetapi sulit diterapkan pada konsentrasi Ag(I) yang rendah. Ruíz-Baltazar dan Pérez (2015) telah mempelajari penanganan limbah dengan metode adsorbsi, yaitu dengan menggunakan adsorben zeolit alam yang terimobilisasi pada ditizon. Metode adsorbsi memiliki kelemahan, yaitu jika adsorben telah jenuh oleh adsorbat, maka akan membentuk limbah padat baru yang berbahaya. Metode selanjutnya yaitu fotoreduksi terkatalisis titanium dioksida (TiO₂). Chen dan Ray (2001) melaporkan bahwa pada proses fotoreduksi terkatalisis TiO₂, ion Ag(I) tereduksi dengan adanya elektron yang dihasilkan dari reaksi fotokatalisis air. Metode fotoreduksi ini cukup efektif dan tidak membutuhkan biaya yang besar.

TiO₂ merupakan satu salah bahan semikonduktor memiliki struktur yang semikonduktor yang dikarakterisasi oleh pita valensi yang terisi elektron dan pita konduksi yang kosong, yang dipisahkan oleh celah yang disebut sebagai band gap. Hal ini menyebabkan bahan tersebut dapat menyerap energi radiasi sebesar celah pita yang dimiliki, sehingga dapat meningkatkan kepekaan reaksi oksidasi dan reduksi yang diinduksi oleh cahaya.

TiO₂ dalam bentuk *anatase* merupakan paling fotoaktif dan praktis dari semikonduktornya pada aplikasi lingkungan yang luas seperti pemurnian air, pengolahan air limbah, pengendalian limbah berbahaya, pemurnian udara, dan disinfeksi air (Hoffmann dkk., 1995). Selain itu, fotokatalis TiO₂ menghasilkan aktivitas yang tinggi untuk oksidasi senyawa organik yang mudah menguap di bawah radiasi UV dan menawarkan nilai ekonomis dan teknis yang praktis untuk membersihkan udara dan air (Kwon dkk, 2008).

TiO₂ umumnya digunakan dalam bentuk serbuk karena mudah digunakan dan memiliki permukaan yang luas. Meskipun begitu, penggunaan dalam bentuk serbuk dapat membentuk suspensi dalam larutan limbah sehingga sulit dilakukan pemisahan padatan fotokatalis dari larutannya. Selain itu, penggunaan TiO2 serbuk dalam jumlah sedikit kurang efektif karena TiO2 akan menyebar dengan cepat ke dalam larutan sehingga diperlukan serbuk dalam jumlah banyak. Namun, penggunaan dalam jumlah banyak akan menyebabkan kekeruhan dan menghalangi penyerapan cahaya oleh fotokatalis tersebut, sehingga proses fotoreduksi maupun fotooksidasi menjadi kurang efektif. Selain itu, penggunaan serbuk akan menyulitkan dalam proses pemisahan padatan fotokatalis dari larutannya, baik untuk tujuan recovery maupun regenerasi. Oleh karena itu, diperlukan modifikasi TiO2.

Modifikasi TiO₂ telah banyak dilakukan dengan cara mengembankan TiO2 pada suatu bahan matriks berpori, seperti zeolit atau ke dalam ruang antar lapisan seperti lapisan lempung. Selain membentuk padatan yang lebih berat, pengembanan juga berfungsi untuk membatasi pertumbuhan kristal oksida yang ada, sehingga ukuran partikelnya menjadi lebih kecil. Pengembanan TiO₂ telah banyak dikaji, diantaranya dengan menggunakan lempung (Sumerta dkk., 2003; Miyoshi, 1989) dan zeolit (Takeda dkk., 1999; Utubria dkk., 2006; Yuniar dkk., 2017). Penggunaan zeolit sintetik tipe X dan Y untuk pengembanan nanopartikel titania telah dilaporkan oleh Xu dan Langford (1997). Hasil penelitiannya menunjukkan bahwa titania yang berada dalam rongga zeolit dan matriks MCM-41 memiliki efek fotokatalitik lebih tinggi dari pada titania bebas. Namun, metode ini memiliki kelemahan, yaitu memerlukan proses yang lama dan tidak semua titania dapat disintesisi di dalam pori, sehingga sifat fotokatalitiknya berkurang.

Modifikasi TiO₂ yang baru dikembangkan adalah modifikasi dengan menggunakan magnetik, yaitu dengan cara penambahan sifat magnetik pada fotokatalis TiO₂. Pemberian sifat magnet ini memungkinkan pemisahan padatan fotokatalis dari larutannya dengan mudah menggunakan medan magnet eksternal. Fotokatalis magnetik ini diperoleh dengan cara melapiskan TiO₂ pada material magnetik. Berbagai material magnetik telah dikenal hingga saat ini, salah satunya adalah magnetit (Fe₃O₄). Magnetit merupakan salah satu material bersifat ferromagnetik yang murah, tidak toksik, biokompatibel, dan memiliki aplikasi yang luas seperti sensor, katalis, dan lain-lain.

Magnetit (Fe₃O₄) merupakan salah satu bijih besi yang dikenal disamping hematit (Fe₂O₃), limonite (FeO(OH)) dan siderite (FeCO₃) (Cotton dan Wilkinson, 1999). Banisharif dkk. (2013) berhasil mensintesis Fe₃O₄-TiO₂, dan menunjukkan bahwa Fe_3O_4 -TiO₂ dapat digunakan sebagai fotokatalis untuk dekolorasi Congo Red. Modifikasi sifat material TiO₂ dengan menambahkan kemagnetan pada TiO2 dapat memudahkan proses pemisahan dengan bantuan medan magnet eksternal. Komponen magnetik digabung dengan nanopartikel TiO₂ sebagai katalis telah dilakukan oleh Zhu dkk. (2010) menggunakan TTIP sebagai sumber titanium untuk membentuk struktur nanokomposit TiO₂/Fe₃O₄. Xuan dkk. (2009) telah mensintesis hollow sphere Fe_3O_4/TiO_2 melalui template polystyrene acrylic acid (PSA) memiliki kemampuan fotokatalis dan dapat digunakan ulang hingga enam kali dengan penurunan aktivitas yang kecil.

METODE PENELITIAN Sintesis Nanopartikel Fe₃O₄

Sebanyak 3,01 g FeCl₃•6H₂O dan 2,04 g FeSO₄•7H₂O masing-masing dilarutkan dalam 30 mL akuabides dengan dialiri gas N₂. Larutan kemudian disonikasi dan ditambahkan 1 M NaOH dalam 20 mL secara bertetes-tetes. Selanjutnya, sebanyak 1 g asam oleat ditambahkan ke dalam larutan dan disonikasi selama 1 jam. Larutan dicuci dengan akuabides

hingga mencapai pH 7, lalu dikeringkan pada suhu 80 °C selama 8 jam.

Sintesis Nanopartikel Fe₃O₄/TiO₂

Sejumlah 18 mL TTIP dimasukkan dalam wadah I dan ditambahkan 20 mL akuabides dengan suhu 5 °C. Pada wadah II sebanyak 0,5 g $(NH4)_2SO_4$ dilarutkan dalam 20 mL akuabides dan ditambahkan 70 mg TiO₂ degusa dan diaduk hingga homogen. Larutan pada wadah I dicampurkan pada larutan wadah II, kemudian dilakukan pengadukan pada suhu 70 °C selama 1 jam hingga terbentuk sol TiO₂. Sol TiO₂ yang diperoleh ditambahkan Fe₃O₄ dan dilakukan pengadukan pengadukan pada suhu 70 °C selama 1 jam. Larutan campuran ditambahkan dengan NH₄OH hingga pH 7. Endapan yang diperoleh kemudian dipisahkan dan dilakukan kalsinasi pada suhu 500 °C selama 3 jam.

Karakterisasi Fotokatalis

Karakterisasi dilakukan dengan metode XRD identifikasi dan penentuan struktur guna nanopartikel, sedangkan FTIR digunakan untuk mengidentifikasi gugus-gugus yang ada pada sampel. Morfologi diperkuat dengan FTIR. struktur nanopartikel dianalisa dengan TEM dan SEM, komposisi nanopartikel sedangkan dianalisa menggunakan SEM-EDX. Sifat magnetik fotokatalis dianalisis dengan menggunakan VSM. Selain itu, juga dilakukan penentuan profil serapan nanopartikel yang dianalisis dengan DR-UV pada panjang gelombang 250-800 nm.

Pengaruh pH dalam Fotoreduksi Ion Ag(I)

Proses fotoreduksi dilakukan dengan sistem batch dalam reaktor tertutup yang dilengkapi dengan lampu UV. Kajian pengaruh pH dalam fotoreduksi ion Ag(I) dilakukan dengan prosedur berikut. Sebanyak 25 mL larutan AgNO₃ 12,5 mg L⁻¹ dimasukkan ke dalam gelas beaker dengan variasi pH masing-masing 2, 4, 6, 8, dan 10. Kemudian, sebanyak 25 mg material fotokatalis dimasukkan ke dalam larutan. Larutan yang sudah ditambahkan katalis dimasukkan ke dalam reaktor fotokatalisis. Larutan diaduk dan disinari cahaya UV selama 180 menit. Fotokatalis dipisahkan dengan menggunakan magnet eksternal. Absorbansi filtrat sebelum dan sesudah ditambahkan fotokatalis dianalisis dengan AAS.

Pengaruh Waktu Penyinaran dalam Fotoreduksi Ion $\mbox{Ag}(I)$

Sebanyak 25 mL larutan $AgNO_3$ 12,5 mg L⁻¹ pH 6 didalam gelas beaker, ditambahkan 25 mg material fotokatalis dan dimasukkan ke dalam reaktor fotokatalisis sambil diaduk dan disinari UV dengan variasi lama penyinaran 0, 15, 30, 60, 120, 150, dan 180 menit. Larutan dipisahkan dari fotokatalis dengan magnet eksternal kemudian filtrat dianalisa dengan AAS.

Reduksi Ion Ag(I) dengan Penyinaran UV dan Tanpa Penyinaran

Sebanyak dua gelas beaker berisi 12,5 mg L⁻¹ larutan AgNO₃ pH 6 ditambahkan fotokatalis TiO₂, nanokomposit Fe₃O₄/TiO₂ pada masing-masing larutan. Selanjutnya dimasukkan ke dalam reaktor fotokatalisis sambil diaduk dan disinari dengan lampu UV pada waktu optimalnya. Larutan dipisahkan dari fotokatalis dengan menggunakan magnet eksternal kemudian dilakukan analisis filtrat dengan AAS. Prosedur ini dilakukan kembali dengan tanpa penyinaran.

HASIL DAN PEMBAHASAN

Sintesis Nanokomposit Fe₃O₄/TiO₂

Nanokomposit Fe_3O_4/TiO_2 dikarakterisasi menggunakan metode FTIR, XRD, TEM, DR-UV. VSM, dan SEM/EDX. Tahap pelapisan TiO₂ pada Fe₃O₄ menggunakan metode sol-gel dengan prekusor TTIP dan penambahan seed atau benih TiO₂ degusa yang dilarutkan dalam (NH₄)₂SO₄. TiO₂ degusa yang larut ditambahkan pada larutan TTIP. Hal ini bertujuan pembentukan kristal TiO2 pada fase anatase menjadi lebih baik. Mehranpour dkk. (2011) menjelaskan bahwa proses pembentukan kristal TiO₂ dengan menggunakan pendekatan teori LaMer (Gambar 1). Selama proses sol-gel titanium alkoksida mengalami hidrolisis dapat dan kondensasi berdasarkan reaksi berikut.

Gambar 1. Proses kristalisasi TiO₂ (Mehranpour dkk., 2011)

 $\begin{array}{c|cccc} Analisis & FTIR & digunakan & untuk \\ mengindentifikasi gugus serta ikatan yang terbentuk \\ dalam material Fe_3O_4 & dan Fe_3O_4/TiO_2. Hasil analisis \\ FTIR Fe_3O_4 & dan Fe_3O_4/TiO_2 & dapat & diamati & pada \\ Gambar 2. \end{array}$

Hasil FTIR Fe_3O_4 menunjukkan pita-pita serapan yang karakteristik. Pita serapan lebar dan menyebar pada 520-590 cm⁻¹ mengindikasikan adanya vibrasi *stretching* Fe-O, sedangkan pada 1627 dan 3425 cm⁻¹ menunjukkan adanya vibrasi *stretching* gugus hidroksida (-OH). Hasil ini sesuai dengan yang dilaporkan Lin dkk. (2012).

Gambar 2. Spektra inframerah a) Fe_3O_4 , b)Nanokomposit Fe_3O_4 /Ti O_2 hasil sintesis

Lin dkk. (2012) melaporkan bahwa daerah sekitar 1630 cm⁻¹ merupakan serapan gugus hidroksida (-OH) dari air (H₂O) yang terdapat pada kristal magnetit. Hasil FTIR yang diperoleh juga mengindikasikan adanya asam oleat yang digunakan sebagai capping agent. Spektra inframerah menunjukkan adanya vibrasi stretching CH₂ asimetri dan simetri pada serapan tajam pada 2931 dan 2854 cm⁻¹. Pita serapan yang kuat pada daerah 1000-1100 dan 1400-1500 cm⁻¹ merupakan pita serapan dari vibrasi stretching C-O. Hasil ini sesuai dengan hasil yang diperoleh Zhang dkk. (2006). Interaksi antara Fe3O4 dan asam oleat ditunjukkan pada Gambar 3.

Gambar 3. Interaksi antara gugus COO⁻ pada asam oleat dengan atom Fe (Nalle dkk., 2019)

Spektra FTIR nanokomposit Fe_3O_4/TiO_2 menunjukkan pita serapan baru Ti-O-Ti. Serapan pada 500-700 cm⁻¹ merupakan daerah *fingerprint* ikatan Ti-O-Ti. Pita serapan pada 3700 cm⁻¹ merupakan vibrasi khas dari Ti-O-Ti. Hasil yang sama juga ditunjukkan pada spektra FTIR nanokomposit Fe_3O_4/TiO_2 yang disintesis oleh Yuan dkk. (2012).

Analisis XRD bertujuan untuk mengetahui kristalinitas, jenis kristal, dan ukuran material yang terbentuk. Hasil difraktogram dari material Fe_3O_4 dan Fe_3O_4/TiO_2 dapat diamati pada Gambar 4. Hasil difraktogram sinar-X dari partikel Fe_3O_4 hasil sintesis menunjukkan adanya puncak-puncak difraksi yaitu pada 20: 18; 30; 35; 36,7; 43; 57,4; dan 62,7°. Perhitungan nilai hkl dari 20 diperoleh indeks Miller (111), (220), (311), (222), (400), (511), dan (440). Hasil Difraktogram sinar-X pada material Fe_3O_4/TiO_2 menunjukkan perbedaan jika dibandingkan dengan difraktogram sinar-X Fe_3O_4 , yaitu munculnya beberapa puncak difraksi dan pergeseran 20.

Gambar 4. Difraktogram XRD a) Fe_3O_4 , b) Nanokomposit Fe_3O_4 /TiO₂ hasil sintesis

Puncak difraksi baru yang muncul pada difraktogram Fe_3O_4/TiO_2 , yaitu 20 pada 24,65; 37,15; 47,43; 54,49; dan 75,00°. Perhitungan nilai hkl dari 20 diperoleh indeks Miller (101), (200), (112), (204), dan (215). Hasil yang diperoleh sesuai dengan ICDD magnetit dengan nomor 00-019-0629 dan ICDD TiO₂ anatase dengan nomor 00-021-1272.

Analisis TEM digunakan untuk mengetahui bentuk nanokomposit Fe_3O_4/TiO_2 hasil sintesis serta ukuran partikel yang dihasilkan. Gambar 5 merupakan citra TEM nanokomposit Fe_3O_4/TiO_2 hasil sintesis.

Gambar 5. Citra TEM Nanokomposit Fe₃O₄/TiO₂ hasil sintesis

Citra TEM pada Gambar 5 menunjukkan bahwa nanokomposit Fe_3O_4/TiO_2 yang terbentuk terdapat bagian yang berwarna hitam dan abu-abu. Hasil ini memiliki kesesuaian dengan yang dilaporkan Banisharif dkk. (2013). Bagian yang tampak gelap dimungkinkan adalah Fe_3O_4 sedangkan bagian yang tampak abu-abu adalah TiO_2 . Ukuran partikel Fe_3O_4/TiO_2 yang terbentuk cukup seragam yaitu 30,09 nm dengan standar deviasi 3,41.

Analisis menggunakan SEM-EDX bertujuan untuk menentukan morfologi permukaan dan komposisi pada nanokomposit Fe₃O₄/TiO₂. Hasil analisa SEM disajikan pada Gambar 6, sedangkan analisa EDX disajikan pada Tabel 1.

Gambar 6. Citra SEM Nanokomposit Fe_3O_4/TiO_2 hasil sintesis

Tabel 1. Komposisi unsur-unsur penyusun nanokomposit Fe₂O₄/TiO₂

Unsur	Berat(%)	Unsur(%)
0	38,61	65,66
Ti	54,87	31,16
Fe	06,51	03,17

Hasil citra SEM menunjukkan bentuk morfologi nanokomposit Fe₃O₄/TiO₂ yang berbentuk bulat dan kubus dengan rongga-rongga pori. Hasil citra SEM juga menunjukkan bahwa terjadi aglomerasi pada material Fe₃O₄/TiO₂. Hasil analisa EDX ditampilkan pada Gambar 6 dan Tabel 1 menunjukkan bahwa terdapat tiga unsur penyusun material nanokomposit Fe₃O₄/TiO₂ yaitu Fe, Ti, dan O. Intensitas Fe yang rendah dan intensitas Ti yang tinggi menunjukkan bahwa TiO₂ memiliki jumlah yang lebih banyak dibanding Fe₃O₄ pada permukaan material. Unsur O memiliki persentase paling banyak, karena semua material penyusun nanokomposit mengandung unsur O. Ukuran partikel Fe₃O₄/TiO₂ yang terbentuk memiliki ukuran 27,45 nm dengan standar deviasi 2,54.

ambar 7. Kurva magnetisasi a) Fe_3O_4 , b) Nanokomposit Fe_3O_4 /TiO₂ hasil sintesis

Tabel 2. Perbandingan nilai kemagnetan Fe_3O_4 dan nanokomposit Fe_3O_4/TiO_2

nanokomposit i C ₃ O ₄ / i iO ₂			
Sampel	Momen magnet (emu/g)		
Fe ₃ O ₄	33,5		
Fe ₃ O ₄ / TiO ₂	10,9		

Pembuktian sifat kemagnetan pada nanokomposit dilakukan dengan menggunakan VSM, yaitu dengan mengukur sifat magnet nanokomposit. Kurva magnetisasi pada Gambar 7 menunjukkan bahwa kurva magnetisasi Fe₃O₄ dan nanokomposit Fe₃O₄/TiO₂, tidak melewati titik (0,0). Hal ini menunjukkan bahwa senyawa Fe₃O₄ bersifat paramagnetik. Material Fe₃O₄ memberikan momen magnet saturasi sebesar 33,5 emu/g, sedangkan nanokomposit Fe₃O₄/TiO₂ sebesar 10,9 emu/g (Tabel 2). Penurunan momen magnet saturasi Fe_3O_4 disebabkan oleh adanya material TiO₂ yang membungkus material Fe₃O₄. Material TiO₂ yang membungkus Fe₃O₄, menyebabkan kemagnetan Fe₃O₄ terhalangi oleh lapisan TiO₂. Material tersebut menjadi lebih besar dan berat, sehingga mengurangi momen magnet dari Fe₃O₄.

b) Nanokomposit Fe_3O_4/TiO_2 hasil sintesis

Karakterisasi dengan menggunakan DR-UV dilakukan untuk melihat profil serapan sampel terhadap sinar UV-Vis dan menentukan besarnya energi celah pita yang dihasilkan oleh semikonduktor hasil sintesis.

Spektra hasil analisis difusi reflektansi UV-Vis ditampilkan pada Gambar 8. Perhitungan celah pita dilakukan dengan metode serapan tepi. Hasil perhitungan energi celah pita nanokomposit Fe_3O_4/TiO_2 dibandingkan dengan TiO_2 , menunjukkan bahwa tidak terjadi perbedaan yang signifikan antara energi celah pita TiO_2 dengan energi celah pita nanokomposit Fe_3O_4/TiO_2 . Perhitungan energi celah pita serbuk TiO_2 dengan menggunakan rumus:

$$E = \frac{h c}{\lambda} \tag{1}$$

Ket:

h: tetapan plank

c: kecepatan cahaya

 λ : panjang gelombang

menunjukkan bahwa material tersebut memiliki energi celah pita $(Eg)\approx 3,20$ eV. Sedangkan, material nanokomposit Fe₃O₄/TiO₂ memiliki energi celah pita $(Eg)\approx 3,22$ eV. Hasil ini menunjukkan bahwa TiO₂ pada material nanokomposit Fe₃O₄/TiO₂ merupakan TiO₂ fase *anatase* dan memiliki kemampuan fotoreaktif pada daerah sinar UV.

Pengaruh pH dalam Fotoreduksi Limbah Ion Ag(I)

Keasaman larutan (pH) berpengaruh pada muatan TiO₂ yang terbentuk. Muatan permukaan fotokatalis TiO₂ menentukan kemudahannya dalam membentuk •OH. Pengaruh pH larutan dianalisis menggunakan percobaan pada kisaran pH 2-10 pada material fotokatalis. Limbah ion Ag(I) setelah perlakuan dianalisis menggunakan AAS untuk mengetahui konsentrasi Ag tersisa. Perhitungan persentase degradasi dilakukan dengan didasarkan pada konsentrasi Ag awal dan konsentrasi Ag yang tersisa pasca fotodegradasi. Grafik Pengaruh pH penyinaran terhadap fotoreduksi ion Ag(I) ditunjukkan pada Gambar 9.

Gambar 9. Pengaruh pH larutan terhadap fotoreduksi limbah ion Ag(I)

Pada Gambar 9 menunjukkan bahwa aktivitas fotokatalitik meningkat seiring dengan meningkatnya pH dan mencapai kondisi optimum pada pH 6.

Pada pH asam :

$$>TiOH + H^+$$
 $TiOH_2^+$
Pada pH basa:
 $>TiOH + OH^ TiO^- + H_2O$
Korman dkk. (1991)

Korman dkk. (1991) menjelaskan bahwa pada pH<6 maka TiO₂ akan membentuk spesies TiOH₂⁺ dan semakin banyak spesies TiOH₂⁺ yang terbentuk seiring penurunan pH. Pada pH 2-6 terdapat pembentukan spesies $TiOH_2^+$, sedangkan berdasarkan diagram Pourbaix (Gambar 10), Ag membentuk ion Ag⁺ menyebabkan adanya interaksi tolak menolak antara muatan positif dari TiOH₂⁺ dengan muatan postif dari Ag. Interaksi tolak menolak ini menyebabkan kontak anatara TiO₂ dengan ion Ag(I) berkurang, sehingga proses fotoreduksi menjadi kurang efektif. Semakin basa larutan maka semakin sedikit spesies TiOH₂⁺ yang terbentuk dan pembentukan TiOH semakin banyak sehingga interaksi elektrostatik antara TiO₂ dengan ion Ag(I) pada pH 2-6 berkurang, mengakibatkan efektivitas fotoreduksi semakin meningkat.

Gambar 10. Diagram Pourbaix Ag (Thomson dkk., 2011)

Pada pH 8 dan 10, terjadi penurunan aktivitas fotoreduksi. Hal ini disebabkan pada pH basa Ag akan membentuk senyawa oksida seperti Ag_2O_2 , Ag_2O_2 , dan Ag_2O_3 seperti yang ditunjukkan oleh diagram Pourbaix. Adanya senyawa Ag_2O , Ag_2O_2 , dan Ag_2O_3 , menyebabkan larutan berubah menjadi keruh. Kekeruhan ini menyebabkan terhalangnya sinar UV untuk masuk kedalam sistem larutan, sehingga fotoreaktivitas TiO₂ menjadi menurun dan mengakibatkan penurunan aktivitas fotoreduksi.

Berdasarkan diagram Pourbaix Ag, semakin basa larutan maka pembentukan senyawa Ag₂O, Ag₂O₂, dan Ag₂O₃ juga semakin besar, sehingga aktivitas fotoreduksi maka akan semakin rendah. Selain itu, pembentukan senyawa perak oksida juga mengurangi interaksi elektrostatik antara TiO₂ dengan Ag, sehingga menyebabkan efektivitas reaksi fotoreduksi menjadi berkurang.

Pengaruh Waktu Penyinaran dalam Fotoreduksi Limbah Ion Ag(I)

Pengujian pengaruh waktu penyinaran terhadap efektivitas fotoreduksi ion Ag(I) dilakukan dengan menggunakan material fotokatalis dan sinar UV. Data hasil yang diperoleh adalah disajikan Gambar 11. Gambar 11 menunjukkan bahwa semakin lama waktu penyinaran, maka semakin banyak ion Ag yang mengalami reduksi. Setelah waktu penyinaran 90 menit, terlihat pada gambar tersebut memperlihat kurva yang relatif stabil. Hal ini menunjukkan bahwa waktu penyinaran optimum pada fotoreduksi ion Ag yaitu 90 menit.

Jumlah eʻ yang terbentuk untuk terjadinya proses fotoreduksi dipengaruhi oleh efektivitas penyinaran yang mengenai permukaan katalis. Pada Gambar 11 tersebut juga menunjukkan bahwa pada waktu penyinaran 0-90 menit, kurva mengalami kenaikan. Hal ini disebabkan oleh semakin lama penyinaran, maka semakin banyak energi foton yang mengenai dan terserap oleh fotokatalis, sehingga semakin banyak eʻ yang terbentuk. Dengan demikian semakin banyak eʻ yang terbentuk, maka semakin banyak ion Ag(I) yang tereduksi, sehingga proses fotoreduksi berlangsung semakin efektif.

Gambar 11. Pengaruh waktu penyinaran terhadap fotooksidasi limbah ion Ag

Fotoreduksi Limbah Ion Ag(I) dengan Penyinaran UV dan Tanpa Penyinaran

Uji aktivitas nanokomposit Fe_3O_4/TiO_2 terhadap ion Ag(I) dilakukan dengan membandingkan aktifitas fotokatalitik nanokomposit Fe_3O_4/TiO_2 dengan TiO₂ pada kondisi penyinaran UV dan tanpa penyinaran. Hasil penelitian ini tersaji pada Gambar 12.

Tabel 3. Komposisi unsur-unsur penyusun nanokomposit Fe₃O₄/TiO₂

Matarial	Ag Tereduksi (%)	
Material	UV	Tanpa UV
TiO ₂	25,49	9,56
Fe ₃ O ₄ /TiO ₂	98.60	50,77

Berdasarkan Gambar 12 terlihat bahwa aktivitas fotokatalitik dari material nanokomposit Fe_3O_4/TiO_2 jauh lebih baik dari pada TiO_2 . Ketika terkena energi foton dari lampu UV, terjadi celah pita antara pita konduksi dan pita valensi. Terbentuknya e⁻ digunakan untuk mereduksi ion Ag(I) menjadi Ag(0). Tabel 3 menunjukkan besarnya persentase Ag tereduksi. Material nanokomposit Fe_3O_4/TiO_2 memberikan aktivitas yang lebih tinggi dari TiO_2 karena adanya Fe_3O_4 dalam material. Fe_3O_4 meningkatkan gaya tarik ion Ag(I) ke permukaan TiO_2 (Pradipta, 2019) sehingga efektifitas proses fotoreduksi ion Ag(I) menjadi lebih baik.

Aktifitas material TiO_2 dan nanokomposit $Fe_3O_4TiO_2$ tanpa penyinaran, digunakan untuk menguji adanya aktivitas adsorbsi dari material TiO_2 dan nanokomposit Fe_3O_4/TiO_2 . Nanokomposit Fe_3O_4/TiO_2 selain memiliki kemampuan sebagai

fotokatalis, juga memiliki kemampuan sebagai adsorben. Hal ini dibuktikan adanya degradasi yang tinggi oleh nanokomposit Fe_3O_4/TiO_2 tanpa penyinaran. Kemampuan adsorbsi nanokomposit Fe_3O_4/TiO_2 lebih baik dari pada TiO_2 .

KESIMPULAN

Berdasarkan penelitian yang telah dilakukan disimpulkan bahwa fotokatalis maka dapat Fe₃O₄/TiO₂ nanopartikel dapat disintesis menggunakan metode sono-kopresipitasi dan metode sol gel, diikuti perlakuan termal pada suhu 500 °C. Nanokomposit Fe₃O₄/TiO₂ berupa partikel bulat dengan ukuran nano, dengan struktur partikel Fe₃O₄ terlapisi oleh lapisan TiO₂. Nanokomposit Fe₃O₄/TiO₂ memiliki sifat magnetik yang baik, dan dapat dipisahkan dari medium cair dengan menggunakan medan magnet eksternal. Fotokatalis Nanopartikel Fe₃O₄/TiO₂ dapat mereduksi ion Ag(I) dalam larutan AgNO₃ berlangsung efektif pada pH 6 selama 90 menit penyinaran. Perlakuan tersebut memberikan hasil degradasi sebesar 98,60 % pada paparan sinar UV.

DAFTAR PUSTAKA

- Banisharif, A., Elahi, S.H., Firooz, A.A., Khodadadi, A. A., & Mortazavi, Y. (2013). TiO₂/Fe₃O₄ Nanocomposite Photocatalysts for Enhanced Photo-Decolorization of Congo Red Dye, *Int. J. Nanosci. Nanotechnol.*, 9, 193-202.
- Nalle, F.C., Wahid, R., Wulandari, I. O., & Sabarudin, A. (2019). Synthesis and Characterization of Magnetic Fe₃O₄ Nanoparticles Using Oleic Acid as Stabilizing Agent, *Rasayan J. Chem.*, 12, 14-21.
- Chen, D., & Ray, A. K. (2001). Removal Toxic Metal Ions from Watewater by Semiconductor Phocatalysis, *Chem. Eng. Sci.*, 56, 1561-1570.
- Cotton, F., & Wilkinson, G. (1999). *Advanced Inorganic Chemistry* (6th ed.). New York: Jhon Wiley and Sons.
- Ruíz-Baltazar, A., & Pérez, R. (2015). Kinetic Adsorption Study of Silver Nanoparticles on Natural Zeolite: Experimental and Theoretical Models, *Appl. Sci.*, 5, 1869-1881
- Hoffmann, M.R., Martin, S.T., Choi, W., & Behremann, D.W. (1995). Environmental Application of Semiconductor Photocatalysis, *Chem. Rev.*, 95, 69-96.
- Korman, C., Bahnemann, D. W., & Hoffman, M. R. (1991). Photolysis of Chloroform and Other Organic Molecules in Aqueous TiO₂ Suspensions, *Environ. Sci. Technol.*, 25, 494-500
- Kwon, S. Fan, M., Cooper, A.T., & Yang, H. (2008).
 Photocatalytic Applications of Micro- and Nano-TiO₂ in Environmental Engineering, *Crit. Rev. Env. Sci. Tec*, 8, 197–226.
- Lin ,Y., Geng, Z., Cai, H., Ma, L., Chen, J., Zeng, J., Pan, N., & Wang, X. (2012). Ternary Graphene–TiO₂–Fe₃O₄ Nanocomposite as A

Recollectable Photocatalyst with Enhanced Durability, *Eur. J. Inorg. Chem*, 28, 4439–4444.

- Mehranpour, H., Askari, M., & Ghamsari, M. (2011). Nucleation and Growth of TiO₂ Nanoparticles, *Nanomaterials*, 22, 3-26.
- Miyoshi, H., & Yoneyama, H. (1989). Photochemical of Iron Oxide Incorporated in Clay Interlayers, J. Chem. Soc., Faraday Trans., 85, 1873-1880.
- Dias, P., Javimczik, S., Benevit, M., Veit, H., & Bernardes, A. M. (2016). Recycling WEEE: Extraction and Concentration of Silver From Waste Crystalline Silicon Photovoltaic Modules, *Waste Manage.*, 57, 220-225.
- Pradipta, A.R. (2019). Sintesis Metanol Melalui Reaksi Reduksi Fotokatalitik CO₂ Terkatalisis Nanokomposit TiO₂ Termodifikasi Fe₃O₄ dan Fe₃O₄/SiO₂. Tesis, Jurusan Kimia FMIPA UGM, Yogyakarta.
- Yuniar, Y., Wahyuni, E., & Aprilita, N. (2017). Photoreduction of Cr(VI) Catalyzed by TiO₂-Lignin, *Indones. J. Fundamental Appl.*, 2, 22–27.
- Rahayuningwulan, D., & Ardeniswan. (2005). Ion Exchanger Application on Silver Recovery from COD Analysis Wastewater, Jurnal Kimia Lingkungan, 1, 7-12.
- Santoso, I., & Buchari (2001). Pengaruh Matriks terhadap Persen Ekstraksi Perak (I) dari Limbah Cuci/Cetak Foto dengan Menggunakan Teknik Pemisahan Emulsi Membran Cair, *Indo. J. Chem. 3*, 149-157.
- Sumerta, I. K., Wijaya, K., & Tahir, I. (Oktober 2002). Fotodegradasi Metilen Biru Menggunakan Katalis TiO₂-Montmorilonit dan Sinar UV, Paper dipresentasikan pada Seminar Nasional Pendidikan Kimia, Yogyakarta, Indonesia.
- Takeda, N., Torimoto, T., & Yoneyama, H. (1999). Effect of Modernite Support on Photodegradation of Gaseous Organic Compound Over TiO₂ Photocatalyst, *Bull. Chem. Soc.*, 72, 1615-1621.
- Thompson, W.T., Kaye, M. H., Bale, C. W., & Pelton, A.D. (2011). *Pourbaix diagrams for multielement systems. In: Uhlig's Corrosion Handbook* (3rd Edition). New Jersey: The Electrochemical Society and Jon Wiley & Sons.
- Utubira, Y., Wijaya, K., Triyono, & Sugiharto, E. (2006). Preparasi dan Karakterisasi TiO₂-Zeolit Serta Pengujiannya pada Degradasi Limbah Industri Tekstil secara Fotokatalitik, *Indo. J. Chem.*, *6*, 231-237.
- Xu, Y., & Langford, C. H. (1997). Photoactivity of Titanium Dioxide Supported on MCM41, Zeolite X, and Zeolite Y, J. Phys. Chem. B, 101, 3115–3121.
- Xuan, S., Jiang, W., Gong, X., Hu, Y., & Chen, Z. (2009). Magnetically Separable Fe₃O₄/TiO₂ Hollow Spheres: Fabrication and Photocatalytic Activity, *J. Phys. Chem. C*, *113*, 553-558.

- Yuan, Q., Li, N., Geng, W., Chi, Y., & Li, X. (2012). Preparation of Magnetically Recoverable Fe₃O₄@SiO₂@meso-TiO₂ Nanocomposites with Enhanced Photocatalytic Ability, *Mater. Res. Bull.*, 47, 2396–2402.
- Zhang, L., He, R., & Gu, H. (2006). Oleic Acid Coating on the Monodisperse Magnetite Nanoparticles, *Appl. Surf. Sci.*, 253, 2652-2656.
- Zhu, C., Zhang, M., Qiao,Y., Xiao, G., Zhang, F., & Chen, Y. (2010). Fe₃O₄/TiO₂ Core/Shell Nanotubes: Synthesis and Magnetic and Electromagnetic Wave Absorption Characteristics, J. Phys. Chem. C, 114, 16229–16235.